Finding Near-optimal Solutions in Multi-robot Trajectory Planning
نویسندگان
چکیده
We deal with the problem of planning collisionfree trajectories for robots operating in a shared space. Given the start and destination position for each of the robots, the task is to find trajectories for all robots that reach their destinations with minimum total cost such that the robots will not collide when following the found trajectories. Our approach starts from individually optimal trajectory for each robot, which are then penalized for being in collision with other robots. The penalty is gradually increased and the individual trajectories are iteratively replanned to account for the increased penalty until a collision-free solution is found. Using extensive experimental evaluation, we find that such a penalty method constructs trajectories with near-optimal cost on the instances where the optimum is known and otherwise with 4-10 % lower cost than the trajectories generated by prioritized planning and up to 40 % cheaper than trajectories generated by local collision avoidance technique ORCA.
منابع مشابه
Optimal Trajectory Planning of a Mobile Robot with Spatial Manipulator For Spatial Obstacle Avoidance
Mobile robots that consist of a mobile platform with one or many manipulators mounted on it are of great interest in a number of applications. Combination of platform and manipulator causes robot operates in extended work space. The analysis of these systems includes kinematics redundancy that makes more complicated problem. However, it gives more feasibility to robotic systems because of the e...
متن کاملOptimal Trajectory Planning of a Box Transporter Mobile Robot
This paper aims to discuss the requirements of safe and smooth trajectory planning of transporter mobile robots to perform non-prehensile object manipulation task. In non-prehensile approach, the robot and the object must keep their grasp-less contact during manipulation task. To this end, dynamic grasp concept is employed for a box manipulation task and corresponding conditions are obtained an...
متن کاملNeuro-Optimizer: A New Artificial Intelligent Optimization Tool and Its Application for Robot Optimal Controller Design
The main objective of this paper is to introduce a new intelligent optimization technique that uses a predictioncorrectionstrategy supported by a recurrent neural network for finding a near optimal solution of a givenobjective function. Recently there have been attempts for using artificial neural networks (ANNs) in optimizationproblems and some types of ANNs such as Hopfield network and Boltzm...
متن کاملStudy of Evolutionary and Swarm Intelligent Techniques for Soccer Robot Path Planning
Finding an optimal path for a robot in a soccer field involves different parameters such as the positions of the robot, positions of the obstacles, etc. Due to simplicity and smoothness of Ferguson Spline, it has been employed for path planning between arbitrary points on the field in many research teams. In order to optimize the parameters of Ferguson Spline some evolutionary or intelligent al...
متن کاملFinding Near-optimal Solutions in Multi-robot Path Planning
We deal with the problem of planning collisionfree trajectories for robots operating in a shared space. Given the start and destination position for each of the robots, the task is to find trajectories for all robots that reach their destinations with minimum total cost such that the robots will not collide when following the found trajectories. Our approach starts from individually optimal tra...
متن کامل